Mechanistic and functional changes in Ca2+ entry after retinoic acid-induced differentiation of neuroblastoma cells.
نویسندگان
چکیده
We have investigated effects of neuronal differentiation on hormone-induced Ca2+ entry. Fura-2 fluorescence measurements of undifferentiated SH-SY5Y neuroblastoma cells, stimulated with methacholine, revealed the presence of voltage-operated Ca2+-permeable, Mn2+-impermeable entry pathways, and at least two voltage-independent Ca2+- and Mn2+-permeable entry pathways, all of which apparently contribute to both peak and plateau phases of the Ca2+ signal. Similar experiments using 9-cis retinoic acid-differentiated cells, however, revealed voltage-operated Ca2+-permeable, Mn2+-impermeable channels, and, more significantly, the absence or down-regulation of the most predominant of the voltage-independent entry pathways. This down-regulated pathway is probably due to CCE (capacitative Ca2+ entry), since thapsigargin also stimulated Ca2+ and Mn2+ entry in undifferentiated but not differentiated cells. The Ca2+ entry components remaining in methacholine-stimulated differentiated cells contributed to only the plateau phase of the Ca2+ signal. We conclude that differentiation of SH-SY5Y cells results in a mechanistic and functional change in hormone-stimulated Ca2+ entry. In undifferentiated cells, voltage-operated Ca2+ channels, CCE and NCCE (non-CCE) pathways are present. Of the voltage-independent pathways, the predominant one appears to be CCE. These pathways contribute to both peak and plateau phases of the Ca2+ signal. In differentiated cells, CCE is either absent or down-regulated, whereas voltage-operated entry and NCCE remain active and contribute to only the plateau phase of the Ca2+ signal.
منابع مشابه
P-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction
Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...
متن کاملApoptosis of N-type neuroblastoma cells after differentiation with 9-cis-retinoic acid and subsequent washout.
BACKGROUND The overall survival rate for patients with neuroblastoma has improved over the past two decades, but long-term survival for the subgroup of patients with high-risk disease remains low. In recent years, there has been interest in the potential clinical use of drugs able to induce differentiation of neuroblastoma cells. Since 9-cis-retinoic acid induces better and more sustained diffe...
متن کاملAnalysis of Promyelocytic Leukemia in Human Embryonic Carcinoma Stem Cells During Retinoic Acid-Induced Neural Differentiation
Background: Promyelocytic leukemia protein (PML) is a tumor suppressor protein that is involved in myeloid cell differentiation in response to retinoic acid (RA). In addition, RA acts as a natural morphogen in neural development. Objectives: This study aimed to examine PML gene expression in different stages of in vitro neural differentiation of NT2 cells, and to investigate the possible role o...
متن کاملThe effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells
Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...
متن کاملEvaluation of Neurogenic Potential of Human Umbilical Cord Mesenchymal Cells a Time- and Concentration- Dependent Manner
Background: Retinoic acid as one of the most important regulators for cell differentiation was examined in this study for differentiation of human umbilical mesenchymal cells (hUCM). Methods: After isolation, hUCM were evaluated for mesenchymal stem cell properties by flow cytometry and alkaline phosphatase assay. Also, doubling time of the cells and their differentiation potential into adipoge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 388 Pt 3 شماره
صفحات -
تاریخ انتشار 2005